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Context: Time Diversity

a Time diversity can be obtained by interleaving and coding
over symbols across different coherent time periods.

Channel: time
diversity/selectivity,
but correlated across
successive symbols

(Repetition) Coding...
w/o interleaving: a full
codeword lost during fade
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Coding alone is not sufficient!
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Interleaving: of sufficient depth:
(> coherence time)
=At most 1 symbol of codeword lost
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What is channel coding?

0 Transforming signals to improve communications performance by
Increasing the robustness against channel impairments (noise,
Interference, fading, ..)

0 Itis a time-diversity technique, but can be broadly thought of as
techniques to make better use of the degrees-of-freedom in channels
(eg: space-time codes)

O Waveform coding: Transforming waveforms to better waveforms

0O Structured sequences: Transforming data sequences into better
sequences, having structured redundancy.

O “Better” in the sense of making the decision process less subject to
errors.

0 Introduce constraints on transmitted codewords to have greater
“distance” between them

0 Note: Channel coding was developed in the context of AWGN channels
& we shall study them in the same context
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3 Google : “shiv rpi”



(Modified) Block Diagram
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Channel Coding Schemes:
Block, Convolutional, Turbo

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Coding Gain: The Value of Coding...

a Error performance vs. bandwidth
2 Power vs. bandwidth

a Data rate vs. bandwidth
2 Capacity vs. bandwidth

Coding gain:

For a given bit-error probability,

the reduction in the Eb/NO that can be
realized through the use of code:

G[dB]=£%] [dB]—(%j [dB]

0./ 0

E, /N, (dB)
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e

Symbol error probability: P_(M)

Coding Gain Potential

Symbol error perfromance of M-ary PAM

[ — Binary-PAM |

i Gap-from-Shannon-limit:

=1 96+159=11.2dB
" | (about 7.8 dB if you maintain |-

@BER=10"°

5 10 15 20
E, /N, [dB]
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The Ultimate Shannon Limit

2 Goal: what is min Eb/No for any spectral efficiency (p—0)?

a Spectral efficiency|p = B/W =log, (1 + SNR)
a where SNR = E /N, where E;=energy per symbol
a2 0rSNR =(2¢ - 1)

0 Eb/No = Es/No * (W/B)
— QNP /a

Eb/| Lets try to appreciate what Shannon’s bound means
by designing some simple codes and comparing it to

.| the Shannon bound

I 1 —
0 Gap-to-capacity @ BER =10-°:

9.6dB + 1.59 = 11.2 dB (without regard for spectral eff.)
or 9.6 — 1.76 = 7.84 dB (keeping spectral eff. constant)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Binary Symmetric Channel (BSC)
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2 Given a BER (f), we can construct a BSC with this
BER...
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Reliable Disk Drive Application

2 We want to build a disk drive and write a GB/day for 10 years.
0 => desired BER: 1015
2 Physical solution: use more reliable components, reduce noise

2 System solution: accept noisy channel, detect/correct errors
(engineer reliability over unreliable channels)

Source

|

Encoder

L
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Decoder

Noisy
channel
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Repetition Code (R3) & Majority Vote Decoding

Source Transmitted
sequence sequence
5 t source message s=0010110
0 000
1 111
s 0 0] 1 0] 1 1 0

t 000 000 111 000 111 111 00O

AWGN n 000 001 000 000 101 000 0OO
r 000 001 111 000 010 111 00O

Algorithm 1.9. Majority-vote
Received sequence r Likelihood ratio %_HS_W Decoded sequence § cllec.ocling a.}:%loril?:ll{w_nl%lforfg. J_dklso
shown are the likelihood ratios
000 7’_3 0 (1.23), assuming the channel is a
001 ”}*_1 0 binary symmetric channel;
010 ,}—1 0 = (1 — f]l,ff.
100 ot 0
101 L 1
110 ! 1
011 A 1
111 v 1

=

is greater than 1, since f < 0.5, so the winning hypothesis is the
one with the most ‘votes’, each vote counting for a factor ot v in the likelihood far Kalyarnaraman I
ratio. Google : “shiv rpi”
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Performance of R3
S 0 0 1 1
; 6"5‘6 600 "1"{‘1“ 600 7111 711 6‘8‘6
n 000 001 000 000 101 000 0OO
r 000 001 111 000 010 111 00O
N N = = = S
S 0 0 1 0 0 1 0
corrected errors *
undetected errors *
S ENCODER t CHANNEL r DECODER é
f=10%

REDUNDAN REGUNDAN

Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded hit
error has fallen to about 3%; the
rate has fallen to 1/3.



The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f 2.

For BSC with f = 0.1, the R3 code has a probability of error, after
decoding, of p, = 0.03 per bit or 3%.

Rate penalty: need 3 noisy disks to get the loss prob down to 3%. To
get to BER: 1015, we need 61 disks!

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Coding: Rate-BER Tradeoff?

s 0 0 1 0 1 1 0
11 e
Repetition t 600 000 111 600 111 111 Goo
. 000 001 000 000 101 000 000

code R3: n

r 000 001 111 000 010 111 000

S 0 0 1 0 0 1 0

CDI‘I‘ECtEd errors *
undetected errors *

[m]
R5__\-B R1
01 4 RO 0.01 4 E’B R3
b [l
0.08 ] Elaéﬂ
- 1e-05 ,_.m more usefil cndag

Lets try to design a “better” code: Hamming Code

B
0.04 1e-10 O
]
1
o
0.02 4 g
R5 more useful codes B
RG'ID/d 1 R61
0 —*@ T T T T T le-15 T T T T T
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Rate Rate

0O Shannon: The perception that there is a necessary tradeoff between Rate and BER is
illusory! It is not true upto a critical rate, the channel capacity!

O You only need to design better codes to give you the coding gain...
Shivkumar Kalyanaraman

14 Google': “shiv rpi”

Rensselaer Polytechnic Institute




Hamming Code: Linear Block Code

O A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits.

O Ina linear block code, the extra N-K bits are linear functions of the original
K bits; these extra bits are called parity-check bits.

0 (7,4) Hamming code: transmits N = 7 bits for every K = 4 source bits.

a The first four transmitted bits, t;t,t;t,, are set equal to the four source
bits, S;5,53S,.

a The parity-check bits t:t.t, are set so that the parity within each circle
(see below) is even

a0

517‘\\\ /1
Y ()\

\ % / I \e/ Y/

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

15 Google : “shiv rpi”



Hamming Code: (Contd)

Table 1.14. The sixteen codewords

s t S t S t s t . i
{t} of the (7.4) Hamming code.
0000 0000000 0100 0100110 1000 1000101 1100 1100011 Any pair of codewords differ from
0001 0001011 0101 0101101 1001 1001110 1101 1101000 ench other in at least three bits.
0010 0010111 0110 0110001 1010 1010010 1110 1110100
0011 0011100 0111 0111010 1011 1011001 1111 1111111
Because the Hamming code 1s a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operafion........ .
. t=G's, ! (1.25)
where (3 1s the generator matrix of the code
41 0 0 07
10 1 0 0| ¢
=10 0 1 0| ;
G'=".0 0 0 1.t (1.26)
1 ----i ..... 1---' 0
0 1 1 1
1 0 1 1
Rensseluc. . v.yccvinine vivuac man
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Hamming Code: Syndrome Decoding

a If channel 1s BSC and all source vectors are equiprobable, then...

Q ... the optimal decoder identifies the source vector S whose encoding
t(s) differs from the received vector r in the fewest bits.

O Similar to “closest-distance” decision rule seen in demodulation!
O Can we do it more efficiently? Yes: Syndrome decoding

TN 2
/ /\ \ /\/\ \ A NEN

\/ / \ Y / X%

(b) S T

The decoding task is to find the smallest set of flipped bits that can account for
these violations of the parity rules.
[The pattern of violations of the parity checks is called the syndrome: the
syndrome above is z = (1, 1, 0), because the first two circles are "unhappy"'
(parity 1) and the third circle 1s "happy* (parity 0).]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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2 Can we find a unique bit that lies inside all the

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

Syndrome Decoding (Contd)

“unhappy' circles and outside all the “happy' circles?

a If so, the flipping of that bit would account for the
observed syndrome.

* # ~ s
1 '\.‘ " O* \‘ :! 1 \
= =~ L — o= =~~~
& *"I - /-“ "I
Alf\ls ﬁl_/\ﬂ\r‘\ N1/ NG
.' lf 0 P . v /0 ! " * v2o
| M | | Sl 4 | : A M
\ [ A N T Y A 18 o)
10 ~ ~
5\ 0 O/ v 0 / i/
(b) \5_ ,-Z_ - (c) \_\A _ / (d) ol

Syndrome z 000 001 010 O11 100 101 110 111

Unflip this bit  none  r=- T T4 rs 1 T2 r3
!
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Hamming Code: Performance

A decoding error will occur whenever the noise has flipped more than one

bit in a block of seven.

Generalizations of Hamming codes: called BCH codes

CHANNEL r
f=10%
REGUNDAN

S ENCODER t DECODER

REDUNDAN

parity bits

The probability scales as O(f 2), as did the probability of error for the
repetition code R3; but Hamming code has a greater rate, R = 4/7.

Dilbert Test: About 7% of the decoded bits are in error. The residual errors
are correlated: often two or three successive decoded bits are flipped...

A= LGl AS5. -

S 1 . .
P = EZP(SJ&: # Sk).

k=1

Figure 1.17. Transmitting 10000
source bits over a binary
symmetric channel with f = 10%
using a (7,4) Hamming code. The
probability of decoded bit error is
about 7%.
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Shannon’s Legacy: Rate-Reliability of Codes

R1o

T+ LBCH(31.16)

+BCH(15.7)
more useful codes

0.4 0.6 0.8 1

0
Rate
0.1 Ri1p
fx‘
/,
0.08 + ot /
+ . + 7
+ H(7.4)
+ P,
0.06 3./
/
+, /
+ + /
0.04 ﬂé{ + . /
/
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0.02 i + /
REZ |
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0 I-L+ T T T
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Shannon limit (the solid curve) is
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_H'_'f"h_'f'_ H +
oo1 4 R Lo T OHTA) R1
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—EL +BCH(1023,101)
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1e-15 B+ | | | |
0 0.2 04 0.6 0.8 1
Rate
0.1 + A
el T g
001 4 R e R
— ++ III
a4
4 O *
o+ i
1e-05 E o+
jus 187
48, +
%r* +
&8+
18 Ji
1e-10 —E‘:
—E achievable | not achievable
o *
@- +
- +
0
-3
1e-15 B | | : |
o 02 04 “06 08 1
Rate

N
o

R=C/(1— Hs(py)), where C' and
H> are defined in equation (1.35).

2 Noisy-channel
coding theorem:
defines
achievable
rate/reliability
regions

0 Note: you can
get BER as low
as desired by
designing an
appropriate code
within the
capacity region

The equation defining the
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Shannon Legacy (Contd)

0.1 5 et om0 . .
01 001 4 Wf} f*/ R1 The equation defining the
] 4 eyt | Shannon limit (the solid curve) is
— t -y - -y
0.08 rogs | B*# R =C/(1— Hs(py)), where C' and
e-05 - + i : 1At 1
Ph {8 H Hy are defined in equation (1.35).
13
0.06 o iy
18 .+
1 i
0.04 + 1e-10 _%-:
i 1= achievable | not achievable
K o
0.02 A g;ﬁ %L +
R5 & |t
g achfevable / notachievable -
0 '|4'+ T o T T T le-15 +* T T c T T T
0 02 04 “06 08 1 0 02 04 “06 08 1
Rate Rate

2 The maximum rate at which communication is possible with

a BSC(f) capacity: 0 =1 Bl = 1~ [Ploga (1 pyioga ]

“What performance are you trying to achieve? 1077 You don’t
need sirty disk drives — yvou can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
p, = 10718 or 10724 or anyvthing, vou can get there with two disk

araman
Google : “shiv rpi”
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Caveats & Remarks

a Strictly, the above statements might not be quite right:

2 Shannon proved his noisy-channel coding theorem by studying
sequences of block codes with ever-increasing block lengths,
and the required block length might be bigger than a gigabyte
(the size of our disk drive),

3 ... in which case, Shannon might say "well, you can't do it with
those tiny disk drives, but if you had two noisy terabyte drives,
you could make a single high-quality terabyte drive from them'.

2 Information theory addresses both the limitations and the
possibilities of communication.

0 Reliable communication at any rate beyond the capacity Is
iImpossible, and that reliable communication at all rates up
to capacity is possible.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Generalize: Linear Coding/Syndrome Decoding

a The first four received bits, r,r,r;r,, purport to be the four source bits; and
the received bits rcrqr, purport to be the parities of the source bits, as defined
by the generator matrix G.

0O Evaluate the three parity-check bits for the received bits, r,r,r;r,, and see
whether they match the three received bits, rzrr-.

QO The differences (modulo 2) between these two triplets are called the
syndrome of the received vector.

Q If the syndrome is zero then the received vector is a codeword, and the
most probable decoding is given by reading out its first four bits.

Q If the syndrome is non-zero, then the noise sequence for this block was
non-zero, and the syndrome Is our pointer to the most probable error
pattern.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear Coding/Syndrome Decoding (Contd)

0 Coding: t=G's.

G is the generator matrix of the code G' =

O = O O O =
O = OO = O
e e e (O OO
= = O = O O O

_+

1

I-|:|I—|

o

[ — |

..............
I

Lets now build linear codes from ground up (first principles)

The syndrome-decoding problem Is to Tind the most Tl
. ; ; ] :Ht=| 0 :
probable noise vector n satisfying the equation | g, — .. :

th

a Parity Check Matrix H:

the parity-check matrix H is given by H = [ —P I ]

. . 01 0 0 '|
l ] 2 ar : Y —1=1.:

in modulo 2 arithmetic, —1 =1, so {01 0

i 0 0 1

1
H=[P I |=1|0
1 J Jmar Kalyanaraman
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el
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Some definitions

a Binary field :
a The set {0,1}, under modulo 2 binary addition
and multiplication forms a field.

Addition Multiplication
020=0 0-0=0
0d1=1 0-1=0
160=1 1-0=0
191=0 1-1=1

2 Binary field is also called Galois field, GF(2).

Shivkumar Kalyanaraman
Google : “shiv rpi”
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Definitions: Fields

a Fields:

O LetF be a set of objects on which two operations ‘+’ and
‘. are defined.
O Fissaid to be a field if and only if
1. Fforms a commutative group under + operation.
The additive identity element 1s labeled “0”.
Va,pbeF=a+b=b+acF

2. F-{0} forms a commutative group under . operation.
The multiplicative identity element 1s labeled “1”.

VabeF =>a-b=b-aeF

3. The operations “+” and “.” distribute:
a-(b+c)=(a-b)+(a-c)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Definitions: Vector Space over Fields

Q Vector space: (note: it mixes vectors and scalars)

O LetV be a set of vectors and F a fields of elements
called scalars. V forms a vector space over F if:

1. Commutative: Vu,veV =u+v=v+uekF

2. Closure: YVaeF,vYweV=a-v=ueV

3. Distributive:
(a+b)-v=a-v+b-v and a-(u+v)=a-u+a-v

4. Assoclative: vVa,be F,vweV =(a-b)-v=a-(b-V)
5. ldentity Element:vveV, 1-v=v

Shivkumar Kalyanaraman
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Vector Spaces, Subspaces

2 Examples of vector spaces V,
2 The set of binary n-tuples, denoted by

V, ={(0000), (0001), (0010), (0011), (0100), (0101), (0111),
(1000), (1001), (1010), (1011), (1100), (1101), (1111)}

2 Vector subspace:
a A subset S of the vector space V. Is called a subspace If:
aZero: The all-zero vector is in S.
aClosure: The sum of any two vectors in S is also in S.

0 Example:
{(0000),(0101), (1010),(1111)} isasubspaceof V,.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Span, Bases...

O Spanning set:
0 A collection of vectors G ={v,,V,,...,V. |

the linear combinations of which include all vectors in a
vector space V, Is said to be a spanning set for V or to span
V.

0 Example:
{(1000), (0110), (1100), (0011), (1001)} spans V,.
O Bases:

a A spanning set for V that has minimal cardinality is called
a basis for V.
0 Cardinality of a set is the number of objects in the set.

O Example:
{(1000), (0100), (0010), (0001) } is a basis for V,.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear Block Codes are just Subspaces!

2 Linear block code (n,k)

0 A set C < V. with cardinality 2“ is called a linear
block code If, and only if, it is a subspace of the
vector space V..

V, >CcV,

a Members of C are called codewords.
a The all-zero codeword Is a codeword.

a Any linear combination of code-words is a
codeword.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d
Vn
V, c
— Bases of C
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

The information bit stream is chopped into blocks of k bits.
Each block is encoded to a larger block of n bits.

The coded bits are modulated and sent over channel.

The reverse procedure is done at the receiver.

Channel

Data block — encoder — Codeword

kEits nvbits

n-kK Redundant bits

R, = K Code rate
n

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Recall: Reed-Solomon RS(N,K): Linear Algebra in

Action...
>= K of N Recover K
RS(N , K) received data packets!

A

r'y

—
—
FEC (N-K) . | ‘

Block —>
Size x Lossy Nehaork
(N)

This is linear algebra in action: design a
k-dimensional vector sub-space out of an
N-dimensional vector space

A -

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

2 The Hamming weight (w) of vector U, denoted by w(U), Is
the number of non-zero elements in U.

2 The Hamming distance (d) between two vectors U and V, Is
the number of elements in which they differ.

2 The minimum distance of a block code Is

d(U, V) =w(U D V)

d

min ~

mind(U., Uj) = miin w(U.)

I#

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

QO Error detection capability Is given by

€= dmin -1

Q Error correcting capability t of a code, which is defined as
the maximum number of guaranteed correctable errors per

codeword, Is t_{dmm _1J
2

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes —cont’d

mappin V

_ _ _ / Bases of C
2 A matrix G Is constructed by taking as Its rowy

the vectors on the basis,{v,,v,,...,V,.}

B ] Vll V12 Vln

V;
V V V
. 21 22 2n
G=| : |=
V.,
| Ve V2 0 Vi |
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

a2 Encoding in (n,k) block code

U=mG

(u,u,,...,.u)=m -V, +m, -V, +...+m, -V,
a The rows of G, are linearly independent.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

2 Example: Block code (6,3)

Rensselaer Polytechnic Institute

0)
||

S S L
||

1110100
011010

1101001

Message vector

Codeword

000
100
010
110
001
101
011
111

000000
110100
011010
101110
101001
011101
110011
000111

Shivkumar Kalyanaraman
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Systematic Block Codes

a2 Systematic block code (n,k)

2 For a systematic code, the first (or last) k elements In
the codeword are information bits.

G=[P:I]
|, =k xk identity matrix
P, =kx(n—k) matrix

U= (u11u2’---’un) — (\pv P2y pn—kjfnli m,,...,M, )

J/

parity bits messz;éebits

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

Q For any linear code we can find an matrix H

rows are orthogonal to rows of G

GH' =0

0 Why? H checks the parity of the received word (i.e. maps the

N-bit word to a M-bit syndrome).

0 Codewords (=mG) should have parity of 0 (i.e. null-space).
0 H is called the parity check matrix and its rows are linearly

. Which its

Independent.
Q For systematic linear block codes:
_ : T
H= [I n—k P ]
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

Data source ——— Format i»

Datasink «—— Format

thciré?ﬁlg U Modulation 7
channel
Channel emodulationJ
M decoding r Detection
-
r=uU+e

r=(r,r,,....,r,) received codeword or vector
e=(e,e,,....,e,) error patternor vector

Q Syndrome testing:

0 S is syndrome of r, corresponding to the error pattern e.

Rensselaer Polytechnic Institute

'S=rH" =eH'

\

Shivkumar Kalyanaraman
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Linear block codes — cont’d

Error pattern Syndrome

000000 000
000001 101
000010 011
000100 110
001000 001
010000 010
100000 100
010001 111

U =(101110) transmitted.
r =(001110) is received.

= Thesyndromeof riscomputed:
S=rH" =(001110)H" = (100)

= Error patterncorresponding to this syndromeis
€ = (100000)

m Thecorrected vector Is estimated

N

U = r +& = (001110) + (100000) = (101110)

There Is a unigue mapping from Syndrome < Error Pattern

Rensselaer Polytechnic Institute
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Standard Array: Error Patterns
0 Example: Standard array for the (6,3) code
codewords
\
000000| 110100 011010 101110 101001 011101 110011 000111
000001 110101 011011 101111 101000 011100 110010 000110
000010/ 110110 011000 101100 101011 011111 110001 000101
000100/ 110000 011110 101010 101101 011010 110111 000110
001000| 111100 : : '
010000 | 100100 Coset:
100000 | 010100 Error patterp +
codeword
010001 100101 010110
\ Coset leaders
(error patterns)
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Linear block codes — cont’d

a Standard array

1. Forrow i=23..2""
weight which is not already listed in the array.

2. Call this error pattern €, and form the i:th row as the

corresponding coset

Zero

find a vector in V,, of minimum

codeword T— U 1 U 5 U oK
. . coset
/ e n—k n—k C_D U n—k C_B U
coset leaders 2 2 2

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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d

Rensselaer Polytechnic Institute

Linear block codes — cont’d

Standard array and syndrome table decoding
1. Calculate syndrome S=rH"
2. Find the coset leader, é=e¢,, correspondingto S .
3. Calculate U=r+éand corresponding m

a0 Notethat U=r+é=(U+e)+é=U+(e+6)
a Ifé=e erroris corrected.

a If é=e, undetectable decoding error occurs.

Shivkumar Kalyanaraman
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Hamming codes

0 Hamming codes

O Hamming codes are a subclass of linear block codes and
belong to the category of perfect codes.

0 Hamming codes are expressed as a function of a single
Integer m > 2 , I.e. n and k are derived from m:
Code length : n=2"-1
Number of information bits: k=2"-m-1
Number of parity bits: n-k =m
Error correction capability: t=1

0 The columns of the parity-check matrix, H, consist of all
non-zero binary m-tuples.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
46 Google': “shiv rpi”




Hamming codes

a Example: Systematic Hamming code (7,4)

10 0i0 111

H={0 1 01 0 1 1|=[l,,: P]
0011101
01110 0 0

G:1015010 0| oy
1100010 e
1110001

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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2 Cyclic codes are a subclass of linear block codes.

2 Encoding and syndrome calculation are easily
performed using feedback shift-registers.

2a Hence, relatively long block codes can be
Implemented with a reasonable complexity.

2 BCH and Reed-Solomon codes are cyclic codes.

Cyclic block codes

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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Cyclic block codes

2 A linear (n,k) code is called a Cyclic code if all
cyclic shifts of a codeword are also a codeword.

[ U = (UO,Ul,UZ,._,,un_l) ]wlm shifts of U

U =(u

n—i? n i+1""’un—1’u0’u1’ n |—1)

aOExample:

U = (1101)
u® =@1110) U® =(0111) U® =(1011) U® =(1101)=U

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

0 Algebraic structure of Cyclic codes, implies expressing codewords in
polynomial form

[U(X) =U, +U X +U,X*+...+u X" degree (n—l)]

0 Relationship between a codeword and its cyclic shifts:
XU(X)=u,X +u,X?+..,u X" +u_ X"

=U_, +UX +UX*+..+u X" +u  X"+u

u® (x U, 1 (X"+1)
n-1

=UP(X)+u_ (X" +1)

OHence: - U®(X) = XU(X) modulo (X" +1)
By extension q

U® (X) = X"U(X) modulo (X" +1) ]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

QO Basic properties of Cyclic codes:
a Let C be a binary (n,k) linear cyclic code

1. Within the set of code polynomials in C,
there Is a unigue monic polynomial g(X)
with minimal degree r <n. g(X)is called
the generator polynomials.

g(X) = 0o+ 9 X +..+0, X r
2. Every code polynomial U(X) in C, can be
expressed uniquely as U(X)=m(X)g(X)
3. The generator polynomial g(X)is a factor
of X"+1

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

4. The orthogonality of G and H In
polynomial form is expressed as g(X)h(X)= X" +1
This means h(X)is also a factor of X" +1

5. Therow i,i=1,..,k , of generator matrix is
formed by the coefficients of the "j-1"
cyclic shift of the generator polynomial.

[0 o ... 0 N1

Toeplitz Matrix (like the circulant matrix): Efficient Linear Algebra
Operations (multiplication, inverse, solution of Ax = b) etc possible

B 9o O, - O,
X “g(X) L J
L J 0 Jdo 91 - O,

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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a Systematic encoding algorithm for an (n,k)

Cyclic block codes

Cyclic code:

1. Multiply the message polynomial m(X) by X "k

2. Divide the result of Step 1 by the generator
polynomial g(X). Let p(X) be the reminder.

3. Add P(X)toX " *m(X) to form the codeword U(X)

Remember CRC used to detect errors in packets?
“Cyclic” Redundancy Check: same idea!

Rensselaer Polytechnic Institute

Shivkumar Kalyanaraman
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d Example: For the systematic (7,4) Cyclic code with generator

Cyclic block codes

polynomial g(X)=1+ X + X°

1.  Find the codeword for the message m = (1011)

Rensselaer Polytechnic Institute
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Example: Encoding of systematic cyclic codes

Encode 1011 in systematic form in the (7, 4) code

Solution

() dx)=1+x>+x°

2) X" *d(x) = x> + x> +x°

(3) ¥ +x Extl
x3+x+l)x6+x5+ x>

x° +xt1x
x° 4+ x*
% i i
: : o B 2
(1) Express the data d in polynomial form, as d(x). g
(2) Multiply d(x) by x" ¥ (equivalent to shifting the data bits to the right-hand X4 +x2+x
end of the codeword. E T
(3) Divide the result by g(x), and take the remainder r(x). .
(4) Form the codeword polynomial as: X +x41

c(x) = r(x) + x""*d(x) 1
=r(x)=1orr=100

@) c(x) =r(x)+xX"*dx)=1+x+x +x* = ¢ =rd = 1001011

which is systematic, although the data word is found at the end of the code-
word, rather than at the beginning. The same data, encoded using the generator
matrix of (6.1), would yield the codeword 1011100.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Decoding cyclic codes

When the received word r is 1101101,
r) =xC+ X0+ 2+ 1

We now compute S(X) =mod[r(x)/g(x)]

x?

x3+x2—[—1) X x4+
xf’+x5 +x3

g(x) x2 + 1

Hence, s = 101. From Table 16.6, this gives e = 0001000, and
c=r®e=1101101 ¢ 0001000 = 1100101

Hence, from Table 16.5 we have
d = 1100

In a similar way, we determine for » = 0101000, s = 110 and e = 1000000; hence
c=r ®e = 1101000, and d = 1101. For r = 0001100, s = 001 and e = 0000001;

henceec =r @ e = 0001101, and d = 0001.

¢ A
1000000 110
0100000 011
0010000 111
000 10400 101
0000100 100
Q000010 010
0000001 001

Table 16.5
d c
1111 1111111
1110 1110010
1101 1101000
1100 1100101
1011 1011100
1010 1010001
1001 1001011
1000 1000110
0111 0111001
1an
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Cyclic block codes
2. Find the generator and parity check matrices, G and H,
respectively.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Cyclic block codes

a Syndrome decoding for Cyclic codes:
0 Received codeword in polynomial form is given by

s -
Received __—F(X) =U(X)+e(X)— Error
codeword pattern

0 The syndrome is the reminder obtained by dividing the received
polynomial by the generator polynomial.

1) =a00800) 45X sy

O With syndrome and Standard array, error is estimated.

Q1In Cyclic codes, the size of standard array is considerably
reduced.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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- Hamming(7,4)

Rensselaer Polytechnic Institute

E, /N, [dB]
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Well-known Cyclic Codes

a (n,1) Repetition codes. High coding gain, but low rate

a (n,k) Hamming codes. Minimum distance always 3. Thus can detect 2
errors and correct one error. n=2"-1, k=n-m, m>3

O Maximum-length codes. For every integer k >3 there exists a maximum
length code (n,k) with n = 2k-1,d._.. = 21, Hamming codes are dual of
maximal codes.

0 BCH-codes. For every integer M = 3 there exist a code with n = 2m-1,
k>n—mt and d >2t+1 where t Is the error correction capability

a (n,k) Reed-Solomon (RS) codes. Works with k symbols that consists of m
bits that are encoded to yield code words of n symbols. For these codes

n=2"-1,number of check symbols n—k=2t and d_=2t+1

0 BCH and RS are popular due to large d. .., large number of codes, and easy
generation

min-

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Reed-Solomon Codes (RS)

T T
\\ RS (246,192)
\ * )
10
N
C‘I““‘\ \ N\ Copy. Code upu
t limit 1" hard it Error
R & limited Rate
10°°
] \ io®
\ <
| 107"
1 2 3 4 5 & 7 8
SNR (EbNo) (dB)

Fig. 3. RS Code versus Convolutional Code.

O Group bits into L-bit symbols. Like BCH codes with symbols rather than single bits.

0 Can tolerate burst error better (fewer symbols in error for a given bit-level burst
event).

O Shortened RS-codes used in CD-ROMSs, DVDs etc _
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Shortened Reed Solomon Codes
RS(N,K) RS(N,K)

A

X

Zeros (2) Z

(@) (o) e](e] (o] (o)

FEC(F=N-K) K=d+72

Block
Size
1 (N)
Data = d d
i 2 v A A
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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RS-code performance

Random Channel Bit Error Rate

1 i 107 10" e 10”7
o s ___“_:__:_._- . ﬂf% ]0_0
i I J — //{ 10 ’ 1 -
.___: /'f / A !.fr,fr
| a.va = A ¢////////
4 _¢7/ | K& _— | oasi1////
S L] i i — A ///r’z’f:‘ff |
RS(32.38) ayin 10710 pd Output
- / ’/ .r’r _:I " Bit Error
1 A / |] Outpu =% Rae
' J BER
~ Rms@sse) S ) |
7 B=6 A 7 },'
il [/ . |
/ / / ' 10"5
» /Rs(128,112 [ ' s
LT R§(256,224) |
v [T | :
A / [_ “
lI..-__":.f.._ ! j fr 'i | 1 0"20 -20
Thu lu—s -4 -1 -2
Rﬂdom Channel ;ER 10 Fig. 2. RS(64.k) Random Digital Error Performance.

Fig. 5. RS Cedes of 7/8-th Rate

0 Longer blocks, better performance

O Encoding/decoding complexity lower for higher code rates (i.e. > %2 ): O{K(N-K) log,N}.
0 5.7-5.8 dB coding gain @ BER = 10~ (similar to 5.1 dB for convolutional codes, see later)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Convolutional Codes
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Block vs

i ] kbits | (nk) n bits
convolutional coding encoder I‘

0 (n,k) block codes: Encoder output of k input bits
n bits depends only on the k input bits m
a (n,k,K) convolutional codes: n output bits
0 each source bit influences n(K+1) Input bit

encoder output bits 1

an(K+1) is the constraint length
aK is the memory depth n(K+1) output bits

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Block diagram: Convolutional Coding

Information Rate 1/n
Modulator
source / Conv. encoder /

_ U=G(m

m_gml,mz,...,mi,...z (m)
Input;gquence :\(U1;U21U3,---,Ui,---)J 9
Codeworaf sequence %
D

U, = Ui yeesU gy Uy

Branch W(rdYn coded bits)
Information Rate 1/n
Demodulator

sink / Conv. decoder /

m=(m,m,,..,Mm,..) Z=(21,2,,25,...Z;...)

_/

received sequence

Z = ZjjyeerZjirenrZp;
D duagrJ outputs - pft ’
emo :
Rensselaer Polytechnic Institute for Branch wod i noutputperBranch worlShjvkumar Kalyanaraman
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Convolutional codes-cont’d

2 A Convolutional code Is specified by three parameters
(n,k,K) or (k/n,K) where

aR. =k/n is the coding rate, determining the
number of data bits per coded bit.

2 In practice, usually k=1 Is chosen and we
assume that from now on.

2 K is the constraint length of the encoder a where
the encoder has K-1 memory elements.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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A Rate ¥ Convolutional encoder

0 Convolutional encoder (rate %2, K=3)

a 3 bit shift-register where the first one takes the incoming
data bit and the rest form the memory of the encoder.

U, { First coded bit
[ ]

(Branch word)
Input data bits ——— Output coded bits
m u,, u,

®
u2 { Second coded bit

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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A Rate Y2 Convolutional encoder

Time Output Time Output

(Branch word) (Branch word)
A | (65 ‘

t —[1]0]o0 \G—»”ﬁ t, —J0]1]0 \g—»“;gz

v ] v ]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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A Rate Y2 Convolutional encoder (contd)

Time Output Time Output

Eg ‘ (Branch word) EE ‘ (Branch word)

c—oJol] &—"1 1 v —[dolo] %—%,

w I T

m=(101) — Encoder |— U=(11 10 00 10 11)

n=2,k=1,K=3,
L = 3 input bits -> 10 output bits

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Effective code rate

a Initialize the memory before encoding the first bit (all-zero)
a Clear out the memory after encoding the last bit (all-zero)
O Hence, a tail of zero-bits is appended to data bits.

data tail —1 Encoder —— codeword

0 Effective code rate :
a L is the number of data bits and k=1 is assumed:
L
Reff — < Rc
n(L+K-1)

m=(101) — Encoder |— U=(11 10 00 10 11)

Example:n=2 k=1, K=3, L=3Iinputbits.

Output=n(L + K -1) =2*(3 + 3 - 1) = 10 output bits
Shivkumar Kalyanaraman
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Encoder representation

0 Vector representation:

2 We define n binary vector with K elements (one vector for

each modulo-2 adder).

a The 1:th element 1n each vector, 1s “1” 1f the 1:th stage in the
shift register Is connected to the corresponding modulo-2

adder, and “0” otherwise.

O Example:

0, = (111)

9, = (101)

N

.

(' > U U

VZ

Rensselaer Polytechnic Institute
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Encoder representation: Impulse Response

2 Impulse response representaiton:

0 The response of encoder to a single “one” bit that goes

through it.
0 Example: _ Branch word
Register
cin(t)eats Ull lj'-z
Inputsequence: 1 0 O 010 L0
Outputsequence: 11 10 11
e 01 __1.1 __
Input m Output
1 i 11 10 11
Oi 00 00 QO
1 11 10 11

Modulo-2sum: 11 10 00 10 11

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Encoder representation: Polynomial

a2 Polynomial representation:

0 We define n generator polynomials, one for each modulo-2
adder. Each polynomial is of degree K-1 or less and
describes the connection of the shift registers to the
corresponding modulo-2 adder.

O Example:
0,(X) =05+ X +g5". X? =1+ X + X?
0,(X)=0p" + 0,7 X +0;” . X* =1+ X"

The output sequence is found as follows:
U(X)=m(X)g,(X) interlaced with m(X)g,(X)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Encoder representation —cont’d

In more detalils:
M(X)g,(X) =@+ XA+ X +X?) =1+ X + X+ X*
m(X)g,(X) = @1+ X)L+ X?) =1+ X*
M(X)g,(X) =1+ X +0.X*+ X°+ X*
m(X)g,(X)=1+0.X +0.X*+0.X° + X"
U(X) =11 +LO)YX +(0.0)X 2+ (LO) X3 + (LD X *
U=11 10 00 10 11

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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State diagram

2 A finite-state machine only encounters a finite number
of states.

a State of a machine: the smallest amount of
Information that, together with a current input to the
machine, can predict the output of the machine.

2 In a convolutional encoder, the state Is represented by
the content of the memory.

0 Hence, there are 2" *states. (grows exponentially w/
constraint length)

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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State diagram — cont’d
0/00 Output C;Jt;rteent input I;:Zf[gt output
Input (Branch word)j S 0 SO 00
00 | 1 g, | U
0 So 11
| 1] "] oo
0 | V2] 10
% | 1 | o | 01
\
10>, _ [T, 0/01 0 | S5 | 01
11

= g | 1[S |10

'\ 1/10 / S

Rensselaer Polytechnic In\stﬁ'utﬁ' - ShivKugnar Kalyanaraman
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Trellis — cont’d

a Trellis diagram is an extension of the state diagram that
shows the passage of time.

0 Example of a section of trellis for the rate Y2 code

State 4 Branch
S, =00 e—~_——0/0

SZ
Sl
S, =
Time
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Trellis —cont’d
a A trellis diagram for the example code o
Input bits Talil bits
1 0 1 0 0
Output bits
11 10 00 10 11
. 0/00 0/00 0/00 0/00 0/00
b 141 b 141 h 111 h 11 b 141
o1 ™S o1 " s A1 s o1~ s 01 " Se
AN /1/00 AN ,1:‘00 AN /1/00 AN /1/00 AN /;L/OO
- < Q - < ) -~ < ~ < - < S
” OALO) /- ) /- ) /-~ ) /- )
1401 101" 101 1401 101
\ N\ \ \ N\
() \ (S \ . \ () \ (S \

09 \\ 09 \\ 0 \\ K0 \\ 0 \\
el il ettt Sttt ettt LI
T, L L t, tg ts
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Trellis — cont’d

Input bits Talil bits
1 0 1 0 0
Output bits
11 10 00 10 11
0/00 o 0/00 . 0/00

\\iﬂ_]\_

o
4
L

Rensselaer Polytechnic Institute
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Path through the trellis
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Optimum decoding

a If the input sequence messages are equally likely, the
optimum decoder which minimizes the probability of error is

the Maximum likelihood decoder.

0 ML decoder, selects a codeword among all the possible
codewords which maximizes the likelihood function p(Z|U™)

where Z is the received sequence and U™ is one of the
possible codewords:

2L
i codewords
>ML deCOdlng I’U|€ to search!1l
Choose U™ if p(Zz|U™) = max p(Z]| u™)
overall U™

Shivkumar Kalyanaraman
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ML decoding for memory-less channels

O Due to the independent channel statistics for memoryless channels, the
likelihood function becomes

PZIU™) =D, ,, 0. (212500 24, [UT) = HIO(Z IU(m))—HHD(Z,.IU(m)

i=1 j=1

and equivalently, the log-likelihood function becomes

7u(m) = log p(ZIU(m’) Zlog p(Z U™y = Zzlog p(Z,. ui”)

~ =l j=1
Bit metrlc

Path metric Branch metric
0 The path metric up to time index I', is called the partial path metric.

» ML decoding rule:
Choose the path with maximum metric among

all the paths in the trellis.
This path 1s the “closest” path to the transmitted sequence.

Stmivkummar Kalyanaraman
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AWGN channels

2 For BPSK modulation the transmitted sequence
corresponding to the codeword U™ is denoted by
where S™ =(s{™,s{™,...,s™,.)and S, =(s{",...,si",..., ")

and s, =+E,
2 The log-likelihood function becomes

(m) (m) Inner product or correlation
7u(m) ZZZJISJI =<z S > between Z and S
=1l j=1

2 Maximizing the correlation is equivalent to minimizing the
Euclidean distance.

» ML decoding rule:

Choose the path which with minimum Euclidean distance

to the received sequence. _
Rensselaer Polytechnic Institute Stivkorar Kalyanaraman
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Q

Q
Q

The Viterbi algorithm performs Maximum likelihood decoding.

a It find a path through trellis with the largest metric (maximum
correlation or minimum distance).

It processes the demodulator outputs in an iterative manner.

At each step in the trellis, it compares the metric of all paths

entering each state, and keeps only the path with the largest
metric, called the survivor, together with its metric.

The Viterbi algorithm

Q

Rensselaer Polytechnic Institute

It proceeds in the trellis by eliminating the least likely paths.
Q It reduces the decoding complexity to L2K_1 !

Shivkumar Kalyanaraman
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The Viterbi algorithm - cont’d

d  Viterbi algorithm:

A. Do the following set up:

O  Foradata block of L bits, form the trellis. The trellis has
L+K-1 sections or levels and starts at time t, and ends up at
time t . .

O  Label all the branches in the trellis with their corresponding
branch metric.

O  Foreach stateKi_rll the trellis at the time t; which is denoted by
S(t;) €{0.1...,2° "} define a parameter (path metric) T(S(t).t;)

B. Then, do the following:

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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The Viterbi algorithm - cont’d

1. Set r(ot)=0and i=2.
2. Attimet , compute the partial path metrics for all the
paths entering each state.

3. Set T(S(t),t,) equal to the best partial path metric
entering each state at time t, .

Keep the survivor path and delete the dead paths from the
trellis.

4. If i<L+K,increasel by 1 and return to step 2.

C. Start at state zero at time [, _ . Follow the surviving branches
backwards through the trellis. The path thus defined is
unique and correspond to the ML codeword.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example of Viterbi decoding

m = (101)
U=(1 10 00 10 11)
Z=(11 10 11 10 01

o 000 o  0/00 ,  0/00 0/00 0/00
I VA H S Vi F A Vk
) Y e 0A1Te. OA1 o OA1 e
“ON0/10 o .00
,x’\(:\ 9/10 310
o o 101 ¢ 1o1 e " 0
SO ol . ol

o o O ¥ ° ()
t, t t, t, i o

T T
ShivRumar Kalyanaraman
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Viterbi decoding-cont’d

QO Label al the branches with the branch metric (Hamming distance)

m = (101)
U=(11 10 00 10 11)
Z=(11 10 11 10 01) r(S().t)

N
\
\
\ \
\ \ -
\
\ s \(/’ .
\
\\ ’// N N
\
N \ / N
\
\
\

. . I ______ ]: o . .

| | | | | Ly

=1 t t, t, -t t
Rensselaer Polytechnic Institute z Shivkumar Kalyana‘?aman
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Q 1=2
m = (101)

Viterbi decoding-cont’d

U=(11 10 00 10 11)
Z=(11 10 11 10 01)

© » @ 1 Q)
oL T4 L

0 ™ C () \/I ’ 0 0
\\ \\\ /2,
SO R O
0 [ ] . g \l 4 S 0
o ) ' ------ t----- l ‘ o o
| | | | Ly
=1 t t, t, -t t
Rensselaer Polytechnic Institute Shivkumar Kalyana‘?aman
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a 1=3

m = (101)

Viterbi decoding-cont’d

U=(11 10 00 10 11)
Z=(11 10 11 10 01)
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Viterbi decoding-cont’d

Q 1=4
m = (101)
U=(11 10 00 10 11
Z=(11 10 11 10 01
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Viterbi decoding-cont’d

m = (101)

U=(11 10 00 10 11)
Z=(11 10 11 10 01

@\2@1@ 2><1 e
e 0. /

~ ~
~ ~
~
~ ~
~ ~
~ ~
~ ~
0 / 0 0
N N -7
\ \ 2
Y \ L <
A ”
AN g
! \(/’ .
’/’ \ S
\
L R J
\ o
' 1
\ \
\
\
\
\
\
N \
N
0 [ < 1 ' 0 0
| | | | | a
T t i

Rensselaer Polytechnic Institute

T T
ShivRumar Kalyanaraman

92

Google : “shiv rpi”



Viterbi decoding-cont’d

Q 1=6
m = (101)
U=(@1 10 00 10 11)
Z=(11 10 11 10 01
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Viterbi decoding-cont’d

U=(11 10 11 00 00)

O Trace back and then: m = (101)
m = (100) VS U=(11 10 00 10 11)
g Z=(11 10 11 10 01

Rensselaer Polytechnic Institute
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Soft and hard decisions

a Hard decision:

0 The demodulator makes a firm or hard decision whether one or zerois
transmitted and provides no other information reg. how reliable the decision is.

O Hence, its output is only zero or one (the output is quantized only to two level)
which are called “hard-bits”.

O Soft decision:

0 The demodulator provides the decoder with some side information together with
the decision.

O The side information provides the decoder with a measure of confidence for the
decision.

0 The demodulator outputs which are called soft-bits, are quantized to more than
two levels. (eg: 8-levels)

0 Decoding based on soft-bits, is called the “soft-decision decoding”.

O On AWGN channels, 2 dB and on fading channels 6 dB gain are obtained by
using soft-decoding over hard-decoding!

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Performance bounds ...
2 Basic coding gain (dB) for soft-decision Viterbi
decoding
Uncoded Code rate ' 1/3 - 1/2
E, /N, | ’
(dB) P, K:7 8.6 7
6.8 107 .42 44 35 38
KT (. 5759, 46, 51
11.3 107 6.2 65 53 58
Upper bound 70 7360 70
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Interleaving

0 Convolutional codes are suitable for memoryless channels
with random error events.

0 Some errors have bursty nature:

0 Statistical dependence among successive error events
(time-correlation) due to the channel memory.

QaLike errors in multipath fading channels in wireless
communications, errors due to the switching noise, ...

a “Interleaving” makes the channel looks like as a memoryless
channel at the decoder.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Interleaving ...

0 Consider a code with t=1 and 3 coded bits.
Q A burst error of length 3 can not be corrected.

Al

A2

A3

Bl

B2

B3

C1

C2

C3

Al

A2

A3|B1

B2

B3|C1

C2

C3

|

Interleaver

Al

Bl

Cl

A2

C2

A3

B3

C3

Rensselaer Polytechnic Institute

— —
2 errors

0 Let us use a block interleaver 3X3
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Concatenated codes

0O A concatenated code uses two levels on coding, an inner code and an
outer code (higher rate).

0O Popular concatenated codes: Convolutional codes with Viterbi

decoding as the inner code and Reed-Solomon codes as the outer
code

O The purpose is to reduce the overall complexity, yet achieving the
required error performance.

Input Outer |
——> Interleaver nner
data encoder encoder Modulate

T—d leuueuvb<—|

Output :
Outer Deinterleaver Inner emodulate
data decoder decoder
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Concatenated Codes

¢~¢=QD-D B M o e [
Q' - 1

a Encoder-channel-decoder B B A N
system C — Q — D can be -
viewed as defining a super-

Fig. 4. Concatenated Code Schematic.

10

and Convolutidnal

-
channel Q’ with a smaller A
probability of error, and with NJ\ |
complex correlations among its H - \L,,R i 0
errors. i L

O We can create an encoder C’ l \ N c@;ﬂmﬁ.e *’ -
and decoder D’ for this super-  ———+— lﬁ_ e
channel Q’. ] h |

|

i
n | S

Rensselaer Polytechnic Institute
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Product/Rectangular Codes: Concatenation +
Interleaving

O Some concatenated codes make use of the idea of interleaving.

0 Blocks of size larger than the block lengths of the constituent
codes C and C’.
O After encoding the data of one block using code C’,

Q ... the bits are reordered within the block in such a way that nearby bits
are separated from each other once the block is fed to the second code C.

2 A simple example of an interleaver is a rectangular code or
product code in which ...
a ... the data: K, x K, rectangular block, and ...
a ... encoded horizontally using an (N;,K,) linear code,
a ... then vertically using a (N,,K,) linear code.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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(a)

2 (a) A string 1011 encoded using a concatenated code
w/ two Hamming codes, H(3, 1) = Repetition code

Product code Example

) 1)11

k [ (16130
1111

A 1301

o 0, 0 13

xS 1:0°0

(b) (c) 1 11

(R3) and H(7,4).
2 (b) a noise pattern that flips 5 bits.
2 (c) The received vector.

Rensselaer Polytechnic Institute
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Product Codes (Contd)
[T 1 11 111 T 1
10 0% x| A1 0% A [T Lk ]ojoo
o it By I S R 11
1|11 * 110 1 1111 111
000 * 001f ¢ 000 000
000 * 1 00 = 1000 000
(a)LLL 1] (b) (c) L1 1 {d'l‘..l 1 1] (e)y L 1
O (d) After decoding using the horizontal (3, 1)
decoder, and 110 1 111
0 (e) after subsequently using the vertical (7; 4) 10 LT
decoder. i L1
O The decoded vector matches the original. i 8 é é é é
0 Note: Decoding in the other order (weaker-code- 100 000
first) leads to residual error in this example: (dy[L1 1] (e[t
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Practical example: Compact disc

“Without error correcting codes, digital audio
would not be technically feasible.”

a Channel in a CD playback system consists of a transmitting laser, a recorded
disc and a photo-detector.

QO Sources of errors are manufacturing damages, fingerprints or scratches
Q Errors have bursty like nature.

Q Error correction and concealment is done by using a concatenated error
control scheme, called cross-interleaver Reed-Solomon code (CIRC).

O Both the inner and outer codes are shortened RS codes

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Compact disc — CIRC Encoder
0 CIRC encoder and decoder:
Encoder
/\
~ N
. A CZ . D* Cl . D
interleave encode interleave encode interleave
y
j A c, Y C. D
) deinterleave | decode ) deinterleave | decode ) deinterleave
N— S
—
Decoder
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Adaptive Modulation and Coding
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Adaptive Modulation

2

Fading envelope (dB) of user 1
S

/ Send 64 QAM Here

Send BPSK Here
S e

-10 .
0 0.2

I
0.4

I | I I | I
0.6 0.8 1 12 1.4 1.6 1.8
Time (secs)

Q Just vary the “M” in the MQAM constellation to the

appropriate SNR

O Can be used in conjunction with spatial diversity

Rensselaer Polytechnic Institute
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Adaptive modulation/coding: Multi-User

2 Exploit multi-user diversity.

2 Users with high SNR: use MQAM (large M) +
high code rates

2 Users with low SNR: use BPSK + low code
rates (1.e. heavy error protection)

a2 Inany WIMAX frame, different users (assigned to
time-frequency slots within a frame) would be
getting a different rate!

a1.e. be using different code/modulation combos..

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Basis for Adaptive Modulation/Coding (AMC)

0 K-user system: the subcarrier of

Interest experiences I.1.d. )
Rayleigh fading: each user’s E
channel gain is independent of =
the others, and is denoted by h,. &
14 '
1.2¢ 00 5 ‘IIO QM;ISHm 2|0 2|5 30
i 10°
x08f /) A\ ®
%E osl |/ “){ \ a g
0.4} / / % \ . g
B ,,f*'///;,/ °
0 4
| RensselProbability density function of finqa. SNR (dB) %

the maximum of the A users channel gains. 110 Google': “shiv rpi”



Wimax: Uses Feedback & Burst Profiles

Transmitter Receiver
bits bits
n| | ECC Symbol | | Power _| Channel Demod sl Decoder O':t_
Encoder Mapper Control SINR =~
Select le lect
elec glec
Queue Code Const. Piy)
Adaptive Modulation and Coding = Channel
Controller Feedback Channel Estimation
PER, v

Figure 6.7: Adaptive Modulation and Coding Block Diagram.

0O Lower data rates are achieved by using a small constellation — such as QPSK — and
low rate error correcting codes such as rate 1/2 convolutional or turbo codes.

0O The higher data rates are achieved with large constellations — such as 64QAM — and
less robust error correcting codes, for example rate 3/4 convolutional, turbo, or
LDPC codes.

0 Wimax burst profiles: 52 different possible configurations of modulation order and
coding types and rates.

0 WIMAX systems heavily protect the feedback channel with error correction, so
usually the main source of degradation is due to mobility, which causes channel
estimates to rapidly become obsolete. Shivkumar Kalyanaraman
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AMC Considerations

0 BLER and Received SINR: In adaptive modulation theory, the transmitter
needs only to know the statistics and instantaneous channel SINR. From the
channel SINR, it can determine the optimum coding/modulation strategy
and transmit power.

Q In practice however, the BLER should be carefully monitored as the
final word on whether the data rate should be increased (if the BLER is
low) or decreased to a more robust setting.

0 Automatic Repeat Request (ARQ): ARQ allows rapid retransmissions,
and Hybrid ARQ generally increases the ideal BLER operating point by
about a factor of 10, e.g. from 1% to 10%.

0 For delay-tolerant applications, it may be possible to accept a BLER
approaching even 70%, if Chase combining is used in conjunction with
HARQ to make use of unsuccessful packets.

a Power control vs. Waterfilling: In theory, the best power control policy
from a capacity standpoint is the so-called waterfilling strategy, in which
more power is allocated to strong channels, and less power allocated to
weak channels. In practice, the opposite may be true in some cases.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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AMC vs Shannon Limit

45

35

Shannon Limit

(]

——{64QAM 7

/S R213

Throughput (bps/Hz)
o
[ [Ag]

_;
i

—
i

II
A
(5]
=
=

|

QPSK
05 R1/2 |

D | 1 | | | | | |
0 2 4 G ] 10 12 14 16 18 20

SINR (dB)

QO Optionally turbo-codes or LDPC codes can be used instead of simple
block/convolutional codes in these schemes

Rensselaer Polytechnic Institute
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Main Points

2 Adaptive MQAM uses capacity-achieving power and rate
adaptation, with power penalty K.

2 Adaptive MQAM comes within 5-6 dB of capacity

0 Discretizing the constellation size results in negligible
performance loss.

2 Constellations cannot be updated faster than 10s to 100s of
symbol times: OK for most dopplers.

QO Estimation error and delay lead to irreducible error floors.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Towards the Shannon Limit!

LDPC, Turbo Codes, Digital Fountains

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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e

Symbol error probability: P_(M)

a
a

Recall: Coding Galn Potentlal

Symbol error perfromance of M-ary PAM

----- 4-ary PAM

— Binary-PAM |

[ ] Gap-from-Shannon-limit:
-| @BER=10"

| 96+159=11.2dB

(about 7.8 dB if you maintain

=1 spectral efficiency)

With convolutional code alone, @BER of 10, we require Eb/No of 4.5dB or get a

E,/N, [dB]

gain of 5.1 dB.

With concatenated RS-Convolutional code, BER curve ~ vertical cliff at an Eb/No

of about 2.5-2.6 dB, i.e a gain of 7.1dB.

We are still 11.2 — 7.1 = 4.1 dB away from the Shannon limit ®
Turbo codes and LDPC codes get us within 0.1dB of the Shannon limit ! ©

Rensselaer Polytechnic Institute
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Fig. 10,

Performance of KS(255,223) and (2,1), K=7 Conv. Code.
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Low-Density Parity Check (LDPC) Codes
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LDPC

m Low-Density Parity-Check (LDPC) codes are a class of linear block '
codes characterized by sparse parity check matrices H

— H has a low-density of 1's

= LDPC codes were originally invented by Robert Gallager in the early
1960’s but were largely ignored until they were “rediscovered” in the
mid-1990’s by MacKay

= Sparseness of H can yield large minimum distance d,_,, and reduces
decoding complexity

m Can perform within 0.0045 dB of Shannon limit

m These code are making their way into standards
— Binary turbo: UMTS, cdma2000
— Duobinary turbo: DVB-RCS, 802.16
— LDPC: DVB-S2 standard.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Example LDPC

O A low-density parity-check matrix and the corresponding (bipartite) graph
of a rate-1/4 low-density parity-check code with blocklength N =16, and M

=12 constraints.

Code

QO Each white circle represents a transmitted bit.

O Each bit participates in j = 3 constraints, represented by squares.
a Each constraint forces the sum of the k = 4 bits to which it i1s connected to

be even.

Q This code is a (16; 4) code. Outstanding performance is obtained when the

blocklength is increased to N =~ 10,000.

Rensselaer Polytechnic Institute
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Tanner Graph

m A Tanner graph is a bipartite graph that describes the parity check
matrix H

m There are two classes of nodes:

— Variable-nodes: Correspond to bits of the codeword or equivalently, to
columns of the parity check matrix
» There are n v-nodes

— Check-nodes: Correspond to parity check equations or equivalently, to
rows of the parity check matrix

« There are m=n-k c-nodes
— Bipartite means that nodes of the same type cannot be connected (e.g. a
c-node cannot be connected to another c-node)
= The i"check node is connected to the | variable node iff the (i,j)"
element of the parity check matrix is one, i.e. if h; =1

— All of the v-nodes connected to a particular c-node must sum (modulo-2)
to zero

Shivkumar Kalyanaraman
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A.k.a Factor Graph Notation

1 1 1 T T
111 100
=10 01101
(100110)
1
A
1 100 0
1101);(0)
Dllﬂl 0
Wy
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Factor Graphs

a A factor graph shows how a function of several variables can be factored into a
product of "smaller" functions.

0 For example, the function g defined by g(x,y)=xy+x can be factored into
g(x,y)=f1(x)f,(y) where f;(x)=x and f,(y)=y+1.

a The factor graph depicting this factorization: x 2

O Graph for function g(x,y,z) = f,(X,y) f,(y,z) f3(x,z). X If_ll

i
5 O
[ ]

O Why Factor graphs?
O 1. Very general: variables and functions are arbitrary
0O 2. Factorization => Sum-Product Algorithm can be applied
a 3. Third, many efficient algorithms are special cases of the Sum-Product Algorithm
applied to factor graphs:
a FFT (Fast Fourier Transform), Viterbi Algorithm, Forward-Backward
Algorithm, Kalman Filter and Bayesian Network Belief Propagation.
0 Brings many good algorithms together in a common framework.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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LDPC Coding Constructions

ﬂ Around 1996, Mackay and Neal described methods for constructing sparse I-N
matrices

m The idea is to randomly generate a M x N matrix H with weight d, columns
and weight d_ rows, subject to some constraints

m  Construction 1A: Overlap between any two columns is no greater than 1
— This avoids length 4 cycles

m  Construction 2A: M/2 columns have d, =2, with no overlap between any pair
of columns. Remaining columns have d, =3. As with 1A, the overlap between
any two columns is no greater than 1

= Construction 1B and 2B: Obtained by deleting select columns from 1A and 2A

K — Can result in a higher rate code /

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

123 Google': “shiv rpi”



LDPC Decoding: Iterative

ﬁ Like Turbo codes, LDPC can be decoded iteratively \
— Instead of a trellis, the decoding takes place on a Tanner graph

— Messages are exchanged between the v-nodes and c-nodes

— Edges of the graph act as information pathways

= Hard decision decoding
— Bit-flipping algorithm
=  Soft decision decoding
— Sum-product algorithm
« Also known as message passing/ belief propagation algorithm
— Min-sum algorithm
« Reduced complexity approximation to the sum-product algorithm
= |n general, the per-iteration complexity of LDPC codes is less than it is
for turbo codes

— However, many more iterations may be required (max=100;avg=30)
\ — Thus, overall complexity can be higher than turbo /

Shivkumar Kalyanaraman
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Regular vs Irregular LDPC Codes

ﬂ An LDPC code is regular if the rows and columns of H have uniform \
weight, i.e. all rows have the same number of ones (d,) and all columns
have the same number of ones (d.)
— The codes of Gallager and MacKay were regular (or as close as possible)
— Although regular codes had impressive performance, they are still about 1 dB
from capacity and generally perform worse than turbo codes
= An LDPC code is irregular if the rows and columns have non-uniform
weight
— lrregular LDPC codes tend to outperform turbo codes for block lengths of
about n>10°

m The degree distribution pair (A, p) for a LDPC code is defined as

Alx) =3 A,x'

Jm 1

pix) = Z pix!
Fml
= A, p;represent the fraction of edges emanating from variable (check)
nodes of degree | /
| Rensselaer Polytechnic Institute Shivkumar Kalyanaraman |
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Irregular LDPC Codes

m Luby et. al. (1998) developed LDPC codes based on irregular LDPC\

K rate /

Tanner graphs

Message and check nodes have conflicting requirements
— Message nodes benefit from having a large degree
— LDPC codes perform better with check nodes having low degrees
Irregular LDPC codes help balance these competing requirements
— High degree message nodes converge to the correct value quickly

— This increases the quality of information passed to the check nodes,
which in turn helps the lower degree message nodes to converge

Check node degree kept as uniform as possible and variable node
degree is non-uniform

— Code 14: Check node degree =14, Variable node degree =5, 6, 21, 23
No attempt made to optimize the degree distribution for a given code

| Rensselaer Polytechnic Institute SNivkumar Kalyanaraman |
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Turbo Codes

'm Turbo codes get their name because the decoder uses

feedback, like a turbo engine.
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Turbo Encoder

h-(_?rl ——

—h-ﬂ_—(?z—h—

A

The encoder of a turbo code.
Each box C1, C2, contains a convolutional code.

Q The source bits are reordered using a permutation « before they are fed to
C2.

The transmitted codeword is obtained by concatenating or interleaving the
outputs of the two convolutional codes.

QO The random permutation is chosen when the code is designed, and fixed
thereafter.

(N

U O

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Turbo: MAP Decoding
'm The goal of the maximum a posteriori (MAP) decoder is to determine
P(u(t)=1|y)and P(u(t)=0 |y ) for each t.
— The probability of each message bit, given the entire received codeword.

m These two probabilities are conveniently expressed as a log-likelihood

ratio: P[ | ]
A() = log DD =11

Plu(r)=01y]

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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BER

10° ¢ m K=5
— constraint length
o' m r=1/2
x;l-_% 1 iteration — code rate
mﬂé-._-.,_ = L=65536
\ o — interleaver size
0%l & < lterations — number data bits
= Log-MAP algorithm
107k 6 iterations
10| %\\
E 10 iterations ™
[ Lo \\
10°F  18iterations :
10" , . T~
0.5 1 1.5 2

Performance as a Function of
Number of Iterations

E /N, in dB
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Turbo Codes: Performance...

= Turbo codes have extraordinary performance at low SNR.
— Very close to the Shannon limit.
— Due to a low multiplicity of low weight code words.

= However, turbo codes have a BER “floor”.
— This is due to their low minimum distance.

m Performance improves for larger block sizes.
— Larger block sizes mean more latency (delay).
— However, larger block sizes are not more complex to decode.
— The BER floor is lower for larger frame/interleaver sizes

= The complexity of a constraint length K. turbo code is the
same as a K = K. convolutional code, where:
— Kee = 24K+ log,(number decoder iterations)

4

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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UMTS Turbo Encoder

Systematic \I
Input . Output

L]

Uninterleaved
* Party
Z,

Interleaved
Parity

YA /J

.
L

Interleaved .
Input

Xy

m From 3GPP TS 25 212 v6.6.0, Release 6 (2005-09)
— UMTS Multiplexing and channel coding

m Data is segmented into blocks of L bits.
— whered40 <L <5114

Rens:

Output

nan
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WIMAX: Convolutional Turbo Codes (CTC)

The standard specifies an optional convolutional turbo code (CTC) for
operation in the 2-11 GHz range.

Uses same duobinary CRSC encoder as DVB-RCS, though without
output W.

4 UJ/" 5 ‘ ? = 5
: w .

¥

= Modulation: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM.
m Key parameters:

— Input message size 8 to 256 bytes long.
- r={1/2, 2/3, 3/4, 5/6, 7/8}

o)
[ ]
|

T
e
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Digital Fountain Erasure Codes
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What is a Digital Fountain?

2 A digital fountain Is an ideal/paradigm for data
transmission.

2Vs. the standard (TCP) paradigm: data Is an
ordered finite sequence of bytes.

2 Instead, with a digital fountain, a k symbol file yields
an infinite data stream (“fountain”); once you have
received any k symbols from this stream, you can
quickly reconstruct the original file.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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How Do We Build a Digital Fountain?

O We can construct (approximate) digital fountains using erasure
codes.

a Including Reed-Solomon, Tornado, LT, fountain codes.
a Generally, we only come close to the ideal of the paradigm.

Q Streams not truly infinite; encoding or decoding times;
coding overhead.

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Forward Error Correction (FEC):
Eg: Reed-Solomon RS(N,K)

>= K of N Recover K
RS(N , K) received data packets!
fEET —]
]
FEC (N-K) | ‘
Block —> .
Size x

Lossy Network

High Encode/Decode times: O{K(N-K) log, N}.
Hard to do @ very fast line rates (eg: 1Gbps+).

(N)

A -
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Digital Fountain Codes (Eg: Raptor codes)

>= K+¢ Recover K

received data packets!
Rateless: No Block Size !

“Fountain of encoded pkts” -
Compute on demand!

Data = K :
B s AN
Low Encode/Decode times: O{K In(K/5)}
w/ probability 1- 8. Overhead € ~ 5%.
Can be done by software & @ very fast (eg: 1Gbps+).
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Raptor/Rateless Codes
Q Properties: Approximately MDS

a “Infinite” supply of packets possible.
2 Need k(1+¢) symbols to decode, for some ¢ > 0.
2 Decoding time proportional to k In (1/¢).

2 On average, In (1/¢) (constant) time to produce an encoding
symbol.

a Key: Very fast encode/decode time compared to RS codes
2 Compute new check packets on demand!

0 Bottomline: these codes can be made very efficient and deliver

on the promise of the digital fountain paradigm.
Rensselaer Polytechnic Institute Shivkumar Kalyanaraman
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Digital Fountain Encoder/Decoder

2 Encoder:

0 Decoder:

Rensselaer Polytechnic Instit

Each encoded packet f,, is produced from the source file sys083... 85 as
follows:

[l
L]
",

size K, as we'll discuss later.

2. Choose, uniformly at random. d,, distinct input packets. and set ¢,
equal to the bitwise sum, modulo 2 of those d,, packets. This sumn
can be done by successively exclusive-or-ing the packets together.

1. Find a check node t,, that is connected to only one source packet
sg. (If there is no such check node, this decoding algorithm halts at
this point. and fails to recover all the source packets.)

(a) Set sp =t,.

(b} Add s; to all checks £, that are connected to sg:
tne 1=ty + s for all n' such that G, = 1. (50.1)

(c) Remove all the edges connected to the source packet s.

2. Repeat (1) until all {s;} are determined.

L~ L vvx/otv. i

/pi



Digital Fountain decoding (example)

QO Received bits: 1011

a t isofdegreel, s, =t, =1

First such code

called “Tornado” code.
Later: LT-codes;
Concatenated version:
“Raptor code”

at, &t; XOR’ed w/ s; = 1.
Remove s;’s edges

a s,setto t, =0 {degree =1}

O Repeat as before; s; =1 VOO

Rensselaer Polytechnic Institute Shivkumar Kalyanaraman

142 D Oe Google‘“: “shiv rpi”




Esoterics: Robust Soliton Degree Distribution

Eho
ALl
0.4 4 Figure 50.2. The distributions p(l) = 1/K
plﬁ_d) and 7(d) for the case p(d) = 1 ford=2.3,... K.
03+ K =10000, ¢ = 0.2, d = 0.05, d(d—1)
which gives S = 244, K/5 = 41,
0.2 and Z =~ 1.3. The distribut_ion T is S = eIn(K/5) VT
largest at d =1 and d = K/S.
0.1 +
S1 d — Igy
o i h““r“ | | | | == ford=1,2,...(K/S)—1
0 10 20 30 40 50 T(d) = I—“iln{SfJ} ford =K/S
0 ford > K/S
140 -~ .
. delta=0.01 / d d
120 geﬁ:a:EH ,.-'"'J- ,ﬂ{d) — M
100 -  delta=0.9 -------- 7 '
80 - & Figure 50.3. The number of
60 - 2 degree-one checks S (upper figure)
40 - f{__{jg:",'-‘"ll and the quantity K’ (lower figure)
20 - e as a function of the two
0 === DIDI — HEIJI'I parameters ¢ and 4, for
11000 - ' o ) K = 10000. Luby’s main theorem
delta=0 01 / : proves that there exists a value of
10800 - 32}{:28;; ;fﬁ e such that, given K’ received
10600 k s packets, the decoding algorithm
10400 s will recover the K source packets
I with probability 1 — 4.
10200 | Pttt
10000 EEELL DE“ e ....[.].ll
Ren | c Shivkumar Kalyanaraman
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Applications: Reliable Multicast

a Many potential problems when multicasting to large audience.
0 Feedback explosion of lost packets.
Q Start time heterogeneity.
Q Loss/bandwidth heterogeneity.

QA digital fountain solves these problems.

O Each user gets what they can, and stops when they have enough: doesn’t
matter which packets they’ve lost

0 Different paths could have diff. loss rates

Rensselaer Polytechnic Institute ivkumar Kalyanaraman
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Applications: Downloading in Parallel

O Can collect data from multiple digital fountains for the same
source seamlessly.

O Since each fountain has an “infinite” collection of packets, no
duplicates.

0 Relative fountain speeds unimportant; just need to get enough.
0 Combined multicast/multi-gather possible.

O Can be used for BitTorrent-like applications.

O Microsoft’s “Avalanche” product uses randomized linear codes to
do “network coding”

d

0 Used to deliver patches to security flaws rapidly; Microsoft Update
dissemination etc
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http://research.microsoft.com/~pablo/avalanche.aspx

Single path: limited capacity, delay, /oss...

High Delay/J

iv| v v v

Low I
Capacity

Network paths usually have
* low e2e capacity,
* high latencies and

« high/variable loss rates. :
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Idea: Aggregate Capacity, Use Route Diversity!

I Perceived

High Perceived
Capacity

Scalable Performance Boost with 1 |tter

Paths
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Multi-path LT-TCP (ML-TCP): Structure

Socket Map pkts—paths intelligently

Buffer based upon Rank(p;, RTT, w)

Y

Per-path congestion control

Reliability @ aggregate, across paths (like TCP)
(FEC block = weighted sum of windows,
PFEC based upon weighted average loss rate)

Note: these ideas can be applied to other link-level multi-homing,

Network-level virtual paths, non-TCP transport protocols (including video-streaming)
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summary

QO Coding: allows better use of degrees of freedom
Q Greater reliability (BER) for a given Eb/No, or
a Coding gain (power gain) for a given BER.
0 Eg: @ BER =10°:
0 5.1 dB (Convolutional), 7.1dB (concatenated RS/Convolutional)
a Near (0.1-1dB from) Shannon limit (LDPC, Turbo Codes)

O Magic achieved through iterative decoding (belief propagation) in both
LDPC/Turbo codes

a Concatenation, interleaving used in turbo codes

Q Digital fountain erasure codes use randomized LDPC constructions as
well.

0 Coding can be combined with modulation adaptively in response to SNR
feedback

O Coding can also be combined with ARQ to form Hybrid ARQ/FEC

O Efficient coding schemes now possible in software/high line rates => they
are influencing protocol design at higher layers also:

a LT-TCP, ML-TCP, multicast, storage (RAID, CD/DVDs), Bittorrent,
Network coding in Avalanche (Microsoft Updates) etc
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